Hermite methods for hyperbolic initial-boundary value problems
نویسندگان
چکیده
We study arbitrary-order Hermite difference methods for the numerical solution of initial-boundary value problems for symmetric hyperbolic systems. These differ from standard difference methods in that derivative data (or equivalently local polynomial expansions) are carried at each grid point. Time-stepping is achieved using staggered grids and Taylor series. We prove that methods using derivatives of order m in each coordinate direction are stable under m-independent CFL constraints and converge at order 2m+1. The stability proof relies on the fact that the Hermite interpolation process generally decreases a seminorm of the solution. We present numerical experiments demonstrating the resolution of the methods for large m as well as illustrating the basic theoretical results.
منابع مشابه
NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملSOLVING LINEAR SIXTH-ORDER BOUNDARY VALUE PROBLEMS BY USING HYPERBOLIC UNIFORM SPLINE METHOD
In this paper, a numerical method is developed for solving a linear sixth order boundaryvalue problem (6VBP ) by using the hyperbolic uniform spline of order 3 (lower order). Thereis proved to be first-order convergent. Numerical results confirm the order of convergencepredicted by the analysis.
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملOn the Construction of Compatible Data for Hyperbolic-parabolic Initial-boundary Value Problems
We study various questions related to compatibility conditions for a class of hyperbolic-parabolic initial-boundary value problems.
متن کاملTariel Kiguradze ON SOLVABILITY AND WELL-POSEDNESS OF INITIAL–BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR HYPERBOLIC EQUATIONS
The sufficient conditions for unique local solvability, global solvability and of well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations are studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006